当前位置: > 学术报告 > 文科 > 正文

文科

Model Averaging Estimation for High-dimensional Covariance Matrix with a Network Structure

发布时间:2019-12-10 浏览:

报告人: 张新雨 研究员

讲座日期:2019-12-11

讲座时间:10:00

报告地点:长安校区 数学与信息科学学院学术交流厅

主办单位:数学与信息科学学院

讲座人简介:

张新雨,中科院系统所/预测中心研究员,Texas A&M大学博士后、Penn State 大学Research Fellow。主要研究方向为模型平均、模型选择、组合预测等。先后主持杰青、优青等4项国家自然科学基金,目前担任《JSSC》、《SADM》、《系统科学与数学》、《应用概率统计》编委和《Econometrics》客座主编。

讲座简介:

In this paper, we develop a model averaging method to estimate the high-dimensional covariance matrix, where the candidate models are constructed by different orders of the polynomial functions. We propose a Mallows-type model averaging criterion and select the weights by minimizing this criterion, which is an unbiased estimator of the expected in-sample squared error plus a constant. Then, we prove the asymptotic optimality of the resulting model average covariance (MAC) estimators. Furthermore, numerical simulations and a case study on Chinese airport network structure data are conducted to demonstrate the usefulness of the proposed approaches.